skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Grigoriu, Mircea"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Truncated Karhunen–Loève (KL) representations are used to construct finite dimensional (FD) models for non-Gaussian functions with finite variances. The second moment specification of the random coefficients of these representations are enhanced to full probabilistic characterization by using translation, polynomial chaos, and translated polynomial chaos models, referred to as T, PC, and PCT models. Following theoretical considerations on KL representations and T, PC, and PCT models, three numerical examples are presented to illustrate the implementation and performance of these models. The PCT models inherit the desirable features of both T and PC models. It approximates accurately all quantities of interest considered in these examples. 
    more » « less
  2. The seismic fragility of a system is the probability that the system enters a damage state under seismic ground motions with specified characteristics. Plots of the seismic fragilities with respect to scalar ground motion intensity measures are called fragility curves. Recent studies show that fragility curves may not be satisfactory measures for structural seismic performance, since scalar intensity measures cannot comprehensively characterize site seismicity. The limitations of traditional seismic intensity measures, e.g., peak ground acceleration or pseudo-spectral acceleration, are shown and discussed in detail. A bivariate vector with coordinates moment magnitude m and source-to-site distance r is proposed as an alternative seismic intensity measure. Implicitly, fragility surfaces in the (m, r)-space could be used as graphical representations of seismic fragility. Unlike fragility curves, which are functions of scalar intensity measures, fragility surfaces are characterized by two earthquake-hazard parameters, (m, r). The calculation of fragility surfaces may be computationally expensive for complex systems. Thus, as solutions to this issue, a bi-variate log-normal parametric model and an efficient calculation method, based on stochastic-reduced-order models, for fragility surfaces are proposed. 
    more » « less
  3. Abstract We face a new era in the assessment of multiple natural hazards whose statistics are becoming alarmingly non‐stationary due to ubiquitous long‐term changes in climate. One particular case is tsunami hazard affected by climate‐change‐driven sea level rise (SLR). A traditional tsunami hazard assessment approach where SLR is omitted or included as a constant sea‐level offset in a probabilistic calculation may misrepresent the impacts of climate‐change. In this paper, a general method called non‐stationary probabilistic tsunami hazard assessment (nPTHA), is developed to include the long‐term time‐varying changes in mean sea level. The nPTHA is based on a non‐stationary Poisson process model, which takes advantage of the independence of arrivals within non‐overlapping time‐intervals to specify a temporally varying hazard mean recurrence rate, affected by SLR. The nPTHA is applied to the South China Sea (SCS) for tsunamis generated by earthquakes in the Manila Subduction Zone. The method provides unique and comprehensive results for inundation hazard, combining tsunami and SLR at a specific location over a given exposure time. The results show that in the SCS, SLR has a significant impact when its amplitude is comparable to that of tsunamis with moderate probability of exceedance. The SLR and its associated uncertainty produce an impact on nPTHA results comparable to that caused by the uncertainty in the earthquake recurrence model. These findings are site‐specific and must be analyzed for different regions. The proposed methodology, however, is sufficiently general to include other non‐stationary phenomena and can be exploited for other hazards affected by SLR. 
    more » « less
  4. Abstract Models of bathymetry derived from satellite radar altimetry are essential for modeling many marine processes. They are affected by uncertainties which require quantification. We propose an uncertainty model that assumes errors are caused by the lack of high‐wavenumber content within the altimetry data. The model is then applied to a tsunami hazard assessment. We build a bathymetry uncertainty model for northern Chile. Statistical properties of the altimetry‐predicted bathymetry error are obtained using multibeam data. We find that a Von Karman correlation function and a Laplacian marginal distribution can be used to define an uncertainty model based on a random field. We also propose a method for generating synthetic bathymetry samples conditional to shipboard measurements. The method is further extended to account for interpolation uncertainties, when bathymetry data resolution is finer than∼10 km. We illustrate the usefulness of the method by quantifying the bathymetry‐induced uncertainty of a tsunami hazard estimate. We demonstrate that tsunami leading wave predictions at middle/near field tide gauges and buoys are insensitive to bathymetry uncertainties in Chile. This result implies that tsunami early warning approaches can take full advantage of altimetry‐predicted bathymetry in numerical simulations. Finally, we evaluate the feasibility of modeling uncertainties in regions without multibeam data by assessing the bathymetry error statistics of 15 globally distributed regions. We find that a general Von Karman correlation and a Laplacian marginal distribution can serve as a first‐order approximation. The standard deviation of the uncertainty random field model varies regionally and is estimated from a proposed scaling law. 
    more » « less